Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Nature ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720073

RESUMEN

Phosphorylation of proteins on tyrosine (Tyr) residues evolved in metazoan organisms as a mechanism of coordinating tissue growth1. Multicellular eukaryotes typically have more than 50 distinct protein Tyr kinases that catalyse the phosphorylation of thousands of Tyr residues throughout the proteome1-3. How a given Tyr kinase can phosphorylate a specific subset of proteins at unique Tyr sites is only partially understood4-7. Here we used combinatorial peptide arrays to profile the substrate sequence specificity of all human Tyr kinases. Globally, the Tyr kinases demonstrate considerable diversity in optimal patterns of residues surrounding the site of phosphorylation, revealing the functional organization of the human Tyr kinome by substrate motif preference. Using this information, Tyr kinases that are most compatible with phosphorylating any Tyr site can be identified. Analysis of mass spectrometry phosphoproteomic datasets using this compendium of kinase specificities accurately identifies specific Tyr kinases that are dysregulated in cells after stimulation with growth factors, treatment with anti-cancer drugs or expression of oncogenic variants. Furthermore, the topology of known Tyr signalling networks naturally emerged from a comparison of the sequence specificities of the Tyr kinases and the SH2 phosphotyrosine (pTyr)-binding domains. Finally we show that the intrinsic substrate specificity of Tyr kinases has remained fundamentally unchanged from worms to humans, suggesting that the fidelity between Tyr kinases and their protein substrate sequences has been maintained across hundreds of millions of years of evolution.

2.
J Food Prot ; : 100284, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38692353

RESUMEN

Beverage innovation is a growing trend with a reliance on co-manufacturing relationships to launch products quickly. A recent co-manufacturing relationship is the utilization of dairy processing facilities to process plant-based beverages using high-temperature short-time (HTST) pasteurization. While the shelflife of HTST bovine milk is well established at 21 days, retailers are expecting new refrigerated beverages to achieve a 60-day shelflife. Little is known about the microbial stability of these new beverages, particularly those with complex formulations. Our objective was to identify bacterial taxa leading to spoilage of four coconut-based creamers and their potential sources (raw ingredients or packaging). We used a multi-faceted approach including plate counting and 16S rRNA metabarcoding to monitor microbial growth in products throughout shelflife (60 d, 4°C), and cold enrichment (7°C, 11 d) of ingredients and packaging. Nearly all product units (25/26) had elevated microbial loads (>4.3 log CFU/mL) prior to the 60-d target, with early spoilage detected at 21 d. Key spoilage taxa included Pseudomonas, Streptococcus, Aerococcus, Paenibacillus, Sphingomonas, and Oceanobacillus. Pseudomonas were responsible for "early" product spoilage (21-32 d), whereas Oceanobacillus were important in products with very "late" spoilage (60-62 d). All key spoilage taxa were identified in cold enrichments of multiple units of waxboard cartons. Paenibacillus was the dominant bacterium in 47% (10/21) of product units. In addition to carton samples, Paenibacillus was also identified in one raw ingredient (mushroom extract). Metabarcoding identified Listeria sensu stricto as a dominant taxon in three individual product units from three distinct production lots. Listeria was also found in 31% (5/16) of cold enrichments of individual cartons. Taxa responsible for spoilage of plant-based beverages were identified as well as demonstrating packaging as an important contamination source.

3.
Sci Adv ; 10(19): eadj5185, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728403

RESUMEN

CK1 kinases participate in many signaling pathways, and their regulation is of meaningful biological consequence. CK1s autophosphorylate their C-terminal noncatalytic tails, and eliminating these tails increases substrate phosphorylation in vitro, suggesting that the autophosphorylated C-termini act as inhibitory pseudosubstrates. To test this prediction, we comprehensively identified the autophosphorylation sites on Schizosaccharomyces pombe Hhp1 and human CK1ε. Phosphoablating mutations increased Hhp1 and CK1ε activity toward substrates. Peptides corresponding to the C-termini interacted with the kinase domains only when phosphorylated, and substrates competitively inhibited binding of the autophosphorylated tails to the substrate binding grooves. Tail autophosphorylation influenced the catalytic efficiency with which CK1s targeted different substrates, and truncating the tail of CK1δ broadened its linear peptide substrate motif, indicating that tails contribute to substrate specificity as well. Considering autophosphorylation of both T220 in the catalytic domain and C-terminal sites, we propose a displacement specificity model to describe how autophosphorylation modulates substrate specificity for the CK1 family.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Especificidad por Sustrato , Fosforilación , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Humanos , Dominio Catalítico , Unión Proteica , Péptidos/metabolismo , Péptidos/química , Mutación , Caseína Cinasa 1 épsilon/metabolismo , Caseína Cinasa 1 épsilon/genética , Secuencia de Aminoácidos
4.
bioRxiv ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38562798

RESUMEN

Mass spectrometry-based phosphoproteomics offers a comprehensive view of protein phosphorylation, but limited knowledge about the regulation and function of most phosphosites restricts our ability to extract meaningful biological insights from phosphoproteomics data. To address this, we combine machine learning and phosphoproteomic data from 1,195 tumor specimens spanning 11 cancer types to construct CoPheeMap, a network mapping the co-regulation of 26,280 phosphosites. Integrating network features from CoPheeMap into a machine learning model, CoPheeKSA, we achieve superior performance in predicting kinase-substrate associations. CoPheeKSA reveals 24,015 associations between 9,399 phosphosites and 104 serine/threonine kinases, including many unannotated phosphosites and under-studied kinases. We validate the accuracy of these predictions using experimentally determined kinase-substrate specificities. By applying CoPheeMap and CoPheeKSA to phosphosites with high computationally predicted functional significance and cancer-associated phosphosites, we demonstrate the effectiveness of these tools in systematically illuminating phosphosites of interest, revealing dysregulated signaling processes in human cancer, and identifying under-studied kinases as putative therapeutic targets.

5.
Cell ; 187(5): 1255-1277.e27, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38359819

RESUMEN

Despite the successes of immunotherapy in cancer treatment over recent decades, less than <10%-20% cancer cases have demonstrated durable responses from immune checkpoint blockade. To enhance the efficacy of immunotherapies, combination therapies suppressing multiple immune evasion mechanisms are increasingly contemplated. To better understand immune cell surveillance and diverse immune evasion responses in tumor tissues, we comprehensively characterized the immune landscape of more than 1,000 tumors across ten different cancers using CPTAC pan-cancer proteogenomic data. We identified seven distinct immune subtypes based on integrative learning of cell type compositions and pathway activities. We then thoroughly categorized unique genomic, epigenetic, transcriptomic, and proteomic changes associated with each subtype. Further leveraging the deep phosphoproteomic data, we studied kinase activities in different immune subtypes, which revealed potential subtype-specific therapeutic targets. Insights from this work will facilitate the development of future immunotherapy strategies and enhance precision targeting with existing agents.


Asunto(s)
Neoplasias , Proteogenómica , Humanos , Terapia Combinada , Genómica , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/terapia , Proteómica , Escape del Tumor
6.
J Cell Biol ; 223(2)2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38059900

RESUMEN

Subcellular location and activation of Tank Binding Kinase 1 (TBK1) govern precise progression through mitosis. Either loss of activated TBK1 or its sequestration from the centrosomes causes errors in mitosis and growth defects. Yet, what regulates its recruitment and activation on the centrosomes is unknown. We identified that NAK-associated protein 1 (NAP1) is essential for mitosis, binding to and activating TBK1, which both localize to centrosomes. Loss of NAP1 causes several mitotic and cytokinetic defects due to inactivation of TBK1. Our quantitative phosphoproteomics identified numerous TBK1 substrates that are not only confined to the centrosomes but are also associated with microtubules. Substrate motifs analysis indicates that TBK1 acts upstream of other essential cell cycle kinases like Aurora and PAK kinases. We also identified NAP1 as a TBK1 substrate phosphorylating NAP1 at S318 to promote its degradation by the ubiquitin proteasomal system. These data uncover an important distinct function for the NAP1-TBK1 complex during cell division.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Citocinesis , Mitosis , Proteínas Serina-Treonina Quinasas , Humanos , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
7.
Cell Rep ; 42(12): 113535, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38060450

RESUMEN

The phosphoinositide 3-kinase p110α is an essential mediator of insulin signaling and glucose homeostasis. We interrogated the human serine, threonine, and tyrosine kinome to search for novel regulators of p110α and found that the Hippo kinases phosphorylate p110α at T1061, which inhibits its activity. This inhibitory state corresponds to a conformational change of a membrane-binding domain on p110α, which impairs its ability to engage membranes. In human primary hepatocytes, cancer cell lines, and rodent tissues, activation of the Hippo kinases MST1/2 using forskolin or epinephrine is associated with phosphorylation of T1061 and inhibition of p110α, impairment of downstream insulin signaling, and suppression of glycolysis and glycogen synthesis. These changes are abrogated when MST1/2 are genetically deleted or inhibited with small molecules or if the T1061 is mutated to alanine. Our study defines an inhibitory pathway of PI3K signaling and a link between epinephrine and insulin signaling.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Humanos , Animales , Ratones , Línea Celular , Ratones Endogámicos C57BL , Masculino , Femenino , Epinefrina/farmacología , Activación Enzimática/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Fosfatidilinositoles/química , Fosfatidilinositoles/metabolismo , Eliminación de Gen , Colforsina/farmacología , Insulina/metabolismo , Fosforilación/efectos de los fármacos , Vía de Señalización Hippo/efectos de los fármacos , Vía de Señalización Hippo/genética
8.
Urology ; 181: 63-68, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37704009

RESUMEN

OBJECTIVE: To study whether varicocele repair would improve sperm capacitation and probability of generating a pregnancy. METHODS: Data were collected prospectively from 40 consecutive adult men who presented with infertility confirmed by semen analysis (SA) and found to have a varicocele on exam or ultrasound who underwent unilateral or bilateral subinguinal microscopic varicocelectomy. We recorded pre and postoperative SA, Cap-Score, and probability of generating a pregnancy (PGP) with a 3-month follow-up. Values were compared using paired t test and Wilcox rank-sum test. RESULTS: Results showed a 17.4% relative increase in Cap-Score (23%-27% capacitation), 25% relative increase in PGP (24%-30%), as well as statistically significant improvements in sperm concentration, motility, and total sperm count postoperatively. CONCLUSION: This study confirms that microsurgical varicocelectomy significantly improves sperm capacitation ability and improves the expected probability of generating a pregnancy within 3 rounds of intrauterine insemination. The improvement in sperm capacitation ability may help explain how varicocele repair may improve the chance of pregnancy, regardless of standard semen parameter improvements.


Asunto(s)
Semen , Varicocele , Adulto , Femenino , Embarazo , Masculino , Humanos , Capacitación Espermática , Varicocele/cirugía , Procedimientos Quirúrgicos Vasculares , Probabilidad
10.
Cell ; 186(18): 3921-3944.e25, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37582357

RESUMEN

Cancer driver events refer to key genetic aberrations that drive oncogenesis; however, their exact molecular mechanisms remain insufficiently understood. Here, our multi-omics pan-cancer analysis uncovers insights into the impacts of cancer drivers by identifying their significant cis-effects and distal trans-effects quantified at the RNA, protein, and phosphoprotein levels. Salient observations include the association of point mutations and copy-number alterations with the rewiring of protein interaction networks, and notably, most cancer genes converge toward similar molecular states denoted by sequence-based kinase activity profiles. A correlation between predicted neoantigen burden and measured T cell infiltration suggests potential vulnerabilities for immunotherapies. Patterns of cancer hallmarks vary by polygenic protein abundance ranging from uniform to heterogeneous. Overall, our work demonstrates the value of comprehensive proteogenomics in understanding the functional states of oncogenic drivers and their links to cancer development, surpassing the limitations of studying individual cancer types.


Asunto(s)
Neoplasias , Proteogenómica , Humanos , Neoplasias/genética , Oncogenes , Transformación Celular Neoplásica/genética , Variaciones en el Número de Copia de ADN
11.
Cell ; 186(18): 3945-3967.e26, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37582358

RESUMEN

Post-translational modifications (PTMs) play key roles in regulating cell signaling and physiology in both normal and cancer cells. Advances in mass spectrometry enable high-throughput, accurate, and sensitive measurement of PTM levels to better understand their role, prevalence, and crosstalk. Here, we analyze the largest collection of proteogenomics data from 1,110 patients with PTM profiles across 11 cancer types (10 from the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium [CPTAC]). Our study reveals pan-cancer patterns of changes in protein acetylation and phosphorylation involved in hallmark cancer processes. These patterns revealed subsets of tumors, from different cancer types, including those with dysregulated DNA repair driven by phosphorylation, altered metabolic regulation associated with immune response driven by acetylation, affected kinase specificity by crosstalk between acetylation and phosphorylation, and modified histone regulation. Overall, this resource highlights the rich biology governed by PTMs and exposes potential new therapeutic avenues.


Asunto(s)
Neoplasias , Procesamiento Proteico-Postraduccional , Proteómica , Humanos , Acetilación , Histonas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fosforilación , Proteómica/métodos
12.
Cancer Rep (Hoboken) ; 6(9): e1853, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37356968

RESUMEN

BACKGROUND: As the ongoing public health crisis from Coronavirus Disease 2019 (COVID-19) pandemic puts strains on current models of cancer care, many health care centers had to adapt to minimize the risk of exposure and infection. The effects of the COVID-19 pandemic in a comprehensive cancer center were determined. AIMS: To measure the impact of the COVID-19 pandemic on care delivery at a comprehensive cancer center. METHODS: The number of on-site and telehealth visits (TH) were obtained from scheduling software. Multiple factors including total visits, telehealth visits, screenings for cancer diagnosis, and cancer treatments were tracked from 2 years before the pandemic onset through 2022. The length of stay (LOS) and Case Mix Index (CMI) were calculated using hospital database. RESULTS: In the third quarter of FY 2020, telehealth visits (TH) represented a fifth of total patient encounters. Cancer treatments, such as chemotherapy, radiation therapy, and surgery, decreased during the pandemic with number of surgeries being most affected (23% decrease in 2020 compared to the previous fiscal year). The average length of stay (LOS) was also longer with less discharges per given time during the pandemic. The increased LOS was related to increased severity of patient illnesses since CMI was higher. Screening mammograms decreased to a nadir of 58% in 2021 as compared to those screened in pre-pandemic fiscal years. CONCLUSION: The COVID-19 pandemic impacted many aspects of care, such as treatment and screenings. Many of these factors had to be postponed due to the fear of acquiring COVID-19 and access to care. The findings presented implicate that the delays and changes in cancer care during the pandemic resulted in less screening and treatment of more advanced disease.


Asunto(s)
COVID-19 , Neoplasias , Telemedicina , Humanos , Pandemias/prevención & control , Telemedicina/métodos , Atención a la Salud , Instituciones de Salud
13.
mBio ; 14(4): e0100723, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37345956

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic, drastically modifies infected cells to optimize virus replication. One such modification is the activation of the host p38 mitogen-activated protein kinase (MAPK) pathway, which plays a major role in inflammatory cytokine production, a hallmark of severe COVID-19. We previously demonstrated that inhibition of p38/MAPK activity in SARS-CoV-2-infected cells reduced both cytokine production and viral replication. Here, we combined quantitative genetic screening, genomics, proteomics, and phosphoproteomics to better understand mechanisms underlying the dependence of SARS-CoV-2 on the p38 pathway. We found that p38ß is a critical host factor for SARS-CoV-2 replication in multiple relevant cell lines and that it functions at a step after viral mRNA expression. We identified putative host and viral p38ß substrates in the context of SARS-CoV-2 infection and found that most host substrates have intrinsic antiviral activities. Taken together, this study reveals a unique proviral function for p38ß and supports exploring p38ß inhibitor development as a strategy toward creating a new class of COVID-19 therapies. IMPORTANCE SARS-CoV-2 is the causative agent of the COVID-19 pandemic that has claimed millions of lives since its emergence in 2019. SARS-CoV-2 infection of human cells requires the activity of several cellular pathways for successful replication. One such pathway, the p38 MAPK pathway, is required for virus replication and disease pathogenesis. Here, we applied systems biology approaches to understand how MAPK pathways benefit SARS-CoV-2 replication to inform the development of novel COVID-19 drug therapies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Citocinas , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Pandemias , SARS-CoV-2/metabolismo , Replicación Viral , Proteína Quinasa 11 Activada por Mitógenos/metabolismo
14.
Microb Genom ; 9(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37224062

RESUMEN

Whole-genome sequencing has become a preferred method for studying bacterial plasmids, as it is generally assumed to capture the entire genome. However, long-read genome assemblers have been shown to sometimes miss plasmid sequences - an issue that has been associated with plasmid size. The purpose of this study was to investigate the relationship between plasmid size and plasmid recovery by the long-read-only assemblers, Flye, Raven, Miniasm, and Canu. This was accomplished by determining the number of times each assembler successfully recovered 33 plasmids, ranging from 1919 to 194 062 bp in size and belonging to 14 bacterial isolates from six bacterial genera, using Oxford Nanopore long reads. These results were additionally compared to plasmid recovery rates by the short-read-first assembler, Unicycler, using both Oxford Nanopore long reads and Illumina short reads. Results from this study indicate that Canu, Flye, Miniasm, and Raven are prone to missing plasmid sequences, whereas Unicycler was successful at recovering 100 % of plasmid sequences. Excluding Canu, most plasmid loss by long-read-only assemblers was due to failure to recover plasmids smaller than 10 kb. As such, it is recommended that Unicycler be used to increase the likelihood of plasmid recovery during bacterial genome assembly.


Asunto(s)
Genoma Bacteriano , Nanoporos , Plásmidos/genética , Secuenciación Completa del Genoma
15.
Nature ; 617(7959): 147-153, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36949200

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is characterized by aggressive local invasion and metastatic spread, leading to high lethality. Although driver gene mutations during PDA progression are conserved, no specific mutation is correlated with the dissemination of metastases1-3. Here we analysed RNA splicing data of a large cohort of primary and metastatic PDA tumours to identify differentially spliced events that correlate with PDA progression. De novo motif analysis of these events detected enrichment of motifs with high similarity to the RBFOX2 motif. Overexpression of RBFOX2 in a patient-derived xenograft (PDX) metastatic PDA cell line drastically reduced the metastatic potential of these cells in vitro and in vivo, whereas depletion of RBFOX2 in primary pancreatic tumour cell lines increased the metastatic potential of these cells. These findings support the role of RBFOX2 as a potent metastatic suppressor in PDA. RNA-sequencing and splicing analysis of RBFOX2 target genes revealed enrichment of genes in the RHO GTPase pathways, suggesting a role of RBFOX2 splicing activity in cytoskeletal organization and focal adhesion formation. Modulation of RBFOX2-regulated splicing events, such as via myosin phosphatase RHO-interacting protein (MPRIP), is associated with PDA metastases, altered cytoskeletal organization and the induction of focal adhesion formation. Our results implicate the splicing-regulatory function of RBFOX2 as a tumour suppressor in PDA and suggest a therapeutic approach for metastatic PDA.


Asunto(s)
Empalme Alternativo , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Empalme Alternativo/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Animales , Metástasis de la Neoplasia , Adhesiones Focales
16.
Nat Chem Biol ; 19(7): 815-824, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36823351

RESUMEN

Creatine kinases (CKs) provide local ATP production in periods of elevated energetic demand, such as during rapid anabolism and growth. Thus, creatine energetics has emerged as a major metabolic liability in many rapidly proliferating cancers. Whether CKs can be targeted therapeutically is unknown because no potent or selective CK inhibitors have been developed. Here we leverage an active site cysteine present in all CK isoforms to develop a selective covalent inhibitor of creatine phosphagen energetics, CKi. Using deep chemoproteomics, we discover that CKi selectively engages the active site cysteine of CKs in cells. A co-crystal structure of CKi with creatine kinase B indicates active site inhibition that prevents bidirectional phosphotransfer. In cells, CKi and its analogs rapidly and selectively deplete creatine phosphate, and drive toxicity selectively in CK-dependent acute myeloid leukemia. Finally, we use CKi to uncover an essential role for CKs in the regulation of proinflammatory cytokine production in macrophages.


Asunto(s)
Creatina Quinasa , Creatina , Creatina Quinasa/química , Creatina Quinasa/metabolismo , Creatina/farmacología , Cisteína , Fosfotransferasas , Isoformas de Proteínas
17.
Nature ; 613(7945): 759-766, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36631611

RESUMEN

Protein phosphorylation is one of the most widespread post-translational modifications in biology1,2. With advances in mass-spectrometry-based phosphoproteomics, 90,000 sites of serine and threonine phosphorylation have so far been identified, and several thousand have been associated with human diseases and biological processes3,4. For the vast majority of phosphorylation events, it is not yet known which of the more than 300 protein serine/threonine (Ser/Thr) kinases encoded in the human genome are responsible3. Here we used synthetic peptide libraries to profile the substrate sequence specificity of 303 Ser/Thr kinases, comprising more than 84% of those predicted to be active in humans. Viewed in its entirety, the substrate specificity of the kinome was substantially more diverse than expected and was driven extensively by negative selectivity. We used our kinome-wide dataset to computationally annotate and identify the kinases capable of phosphorylating every reported phosphorylation site in the human Ser/Thr phosphoproteome. For the small minority of phosphosites for which the putative protein kinases involved have been previously reported, our predictions were in excellent agreement. When this approach was applied to examine the signalling response of tissues and cell lines to hormones, growth factors, targeted inhibitors and environmental or genetic perturbations, it revealed unexpected insights into pathway complexity and compensation. Overall, these studies reveal the intrinsic substrate specificity of the human Ser/Thr kinome, illuminate cellular signalling responses and provide a resource to link phosphorylation events to biological pathways.


Asunto(s)
Fosfoproteínas , Proteínas Serina-Treonina Quinasas , Proteoma , Serina , Treonina , Humanos , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Especificidad por Sustrato , Treonina/metabolismo , Proteoma/química , Proteoma/metabolismo , Conjuntos de Datos como Asunto , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Línea Celular , Fosfoserina/metabolismo , Fosfotreonina/metabolismo
18.
Facial Plast Surg ; 39(3): 311-316, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36572030

RESUMEN

BACKGROUND: The coronavirus disease 2019 pandemic affected many aspects of medical practice, particularly surgical fields. The American College of Surgery initially recommended the cancellation of all elective procedures. As a result, virtual consultations (VCs; a form of telemedicine), became widely used in the field of facial plastic and reconstructive surgery. With more facial plastic and reconstructive surgeons (FPRS) conducting both in-person and virtual visits, it is imperative to understand how VCs are utilized in practice. METHODS: An electronic, anonymous survey was distributed to 1,282 electronic mail addresses in the 2018 American Academy of Facial Plastic and Reconstructive Surgery directory. The survey collected responses on various topics including demographic information and past, current, and future use of VCs. RESULTS: The survey yielded 84 responses. Most surgeons (66.7%) were 11+ years out of fellowship. There was a significant increase in the percentage of VCs scheduled after the pandemic than before (p = 0.03). FPRS most frequently responded that VCs should always be followed by an in-person visit (48.6%). A majority of FPRS (66.2%) believe that VCs have improved the delivery of health care in at least some cases. Almost all FPRS (86.5%) plan on using VCs after the pandemic. CONCLUSION: Since the pandemic, VCs are more frequently used by surgeons and are mostly utilized as an initial patient visit. A majority of FPRS believe that VCs have improved health care in at least some cases, and plan on using VCs after the pandemic.


Asunto(s)
COVID-19 , Procedimientos de Cirugía Plástica , Cirugía Plástica , Humanos , Estados Unidos , COVID-19/epidemiología , Cirugía Plástica/métodos , Pandemias , Derivación y Consulta
19.
JDS Commun ; 3(2): 91-96, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36339734

RESUMEN

Rework is a common practice used in the dairy industry as a strategy to help minimize waste from processing steps or errors that might otherwise render the product unsaleable. Dairy processors may rework their high-temperature, short-time (HTST) fluid milk products up to code date (21 d) at a typical dilution rate of ≤20% rework into ≥80% fresh raw milk. Bacterial spores present in raw milk that can survive pasteurization and grow at refrigeration temperatures are often responsible for milk spoilage. However, the potential impact of growth and thermal resistance of organisms in reworked product has not been investigated. Our objective was to characterize growth, sporulation, and thermal resistance of Paenibacillus odorifer under conditions representative of extreme storage conditions (time and temperature) of reduced fat (2%) and chocolate milk to evaluate whether product containing rework would have a reduced shelf life. Commercial UHT-pasteurized 2% milk and chocolate milk were independently inoculated with 4 strains of P. odorifer at 1 to 2 log cfu/mL and stored at 4°C and 7°C for 30 d. Changes in P. odorifer cell densities were determined by standard serial dilution with spread plating on tryptic soy agar with yeast extract and incubation at 25°C for 48 h. Spore counts were determined following thermal treatment at 80°C for 12 min. Thermal resistance of a cocktail of P. odorifer in milk was determined after treatments at 63°C for 30 min and 72°C for 15 s. Strains of P. odorifer grew rapidly at 7°C and reached a maximum cell density of ~8 log cfu/g in both 2% and chocolate milk within 12 d. All strains grew more slowly at 4°C and had not reached maximum cell density by 21 d. With extreme temperature abuse (25°C, 24 h), P. odorifer will sporulate in milk; however, thermally resistant subpopulations, including spores, did not develop in milk at 4°C until after stationary phase was achieved (>24 d). Vegetative cells of P. odorifer were verified to be sensitive to pasteurization (>7 log reduction); therefore, P. odorifer would not be expected to contribute to reduced shelf life of fluid milk products containing rework, even with extended storage before rework.

20.
Sci Signal ; 15(757): eabm0808, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36282911

RESUMEN

Multiple coronaviruses have emerged independently in the past 20 years that cause lethal human diseases. Although vaccine development targeting these viruses has been accelerated substantially, there remain patients requiring treatment who cannot be vaccinated or who experience breakthrough infections. Understanding the common host factors necessary for the life cycles of coronaviruses may reveal conserved therapeutic targets. Here, we used the known substrate specificities of mammalian protein kinases to deconvolute the sequence of phosphorylation events mediated by three host protein kinase families (SRPK, GSK-3, and CK1) that coordinately phosphorylate a cluster of serine and threonine residues in the viral N protein, which is required for viral replication. We also showed that loss or inhibition of SRPK1/2, which we propose initiates the N protein phosphorylation cascade, compromised the viral replication cycle. Because these phosphorylation sites are highly conserved across coronaviruses, inhibitors of these protein kinases not only may have therapeutic potential against COVID-19 but also may be broadly useful against coronavirus-mediated diseases.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , SARS-CoV-2/genética , Fosforilación , Glucógeno Sintasa Quinasa 3/metabolismo , Replicación Viral , Proteínas de la Nucleocápside/metabolismo , Nucleocápside/metabolismo , Serina/metabolismo , Treonina/metabolismo , Mamíferos/metabolismo , Proteínas Serina-Treonina Quinasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...